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Abstract
Our goal is the automatic detection of spectra of emission (Be) stars in large
archives and classification of their types based on a typical shape of the Hα emis-
sion line. Due to the length of spectra, classification of the original data is compu-
tationally expensive. In order to lower computational requirements and enhance
the separability of the classes, we have to find a reduced representation of spectral
features, however conserving most of the original information content. As the
Be stars show a number of different shapes of emission lines, it is not easy to
construct simple criteria (like e.g. Gaussian fits) to distinguish the emission lines
in an automatic manner. We proposed to perform the wavelet transform of the
spectra, calculate statistical metrics from the wavelet coefficients, and use them
as feature vectors for classification. In this paper, we compare different wavelet
transforms, wavelets, and statistical metrics in attempt to find the best method.

Introduction

Technological progress and growing computing power are causing data avalanche
in almost all sciences, including astronomy. The full exploitation of these massive
distributed data sets clearly requires automated methods. One of the difficulties
is the inherent size and dimensionality of the data. The efficient classification
requires that we reduce the dimensionality of the data in a way that preserves as
many of the physical correlations as possible.

Be stars are hot, rapidly rotating B-type stars with equatorial gaseous disk pro-
ducing prominent emission Hα lines in their spectrum [9]. The emission lines are
bright lines in a spectrum caused when the atoms and molecules in a hot gas
emit extra light at certain wavelengths [6]. The distribution of these lines in a
spectrum is unique for each chemical element. Hα line is created by hydrogen
with a wavelength of 656.28 nm. Be stars show a number of different shapes of
the emission lines, as we can see in Fig. 1. These variations reflect underlying
physical properties of a star.

As the Be stars show a number of different shapes of emission lines like double-
peaked profiles with or without narrow absorption (called shell line) or single
peak profiles with various wing deformations, it is very difficult to construct a
simple criteria to identify the Be lines in an automatic manner as required by
the amount of spectra considered for processing. However, even simple criteria
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Figure 1: Examples of typical shapes of emission lines in spectra of Be stars (first
three pictures) in comparison with a normal star (the last picture).

of combination of three attributes (width, height of Gaussian fit through spec-
tral line and the medium absolute deviation of noise) were sufficient to identify
interesting emission line objects among nearly two hundred thousand of SDSS
SEGUE spectra [10].

To distinguish different types of emission line profiles (which is impossible using
only Gaussian fit), we cannot use directly all points of each spectrum, as the
number of independent input parameters has to be kept low. We have to find
a concise description of the spectral features, however conserving most of the
original information content.

We propose to perform the wavelet transform (WT) of the spectra, compute the
statistical metrics from the wavelet coefficients, and use them as feature vectors
for classification. This method has been successfully applied in recent years to
many similar problems like a detection of particular EEG activity. In astronomy,
the wavelet transform was used recently for estimating stellar physical parameters
from spectra of all ordinary types of stars [8]. However, we need to concentrate on
different shapes of several emission lines which requires the extraction of feature
vectors first.

In [2] we proposed a feature extraction method which reduces the number of
attributes from ∼2000 to 10, can reduce the processing time from ∼330 minutes
to ∼1 minute, and increase the accuracy from 96.7% to 98.1% at the same time.
In this paper, we perform more experiments with feature extraction techniques
and their parameters in an attempt to find the best technique and combination
of parameters.

Data

The source of data is the archive of the Astronomical Institute of the Academy
of Sciences of the Czech Republic in Ondřejov. The spectra were obtained with
a spectrograph of Ondřejov Observatory 2 m telescope. The dataset consists of
1565 spectra of Be and normal stars manually divided into 4 classes (178, 172,
1159, and 56 samples) based on the shape of the Hα line. The original spectrum
contains approximately 2000 values around Hα line. Examples of spectra typical
for individual categories are sketched in Figure 1.
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Feature Extraction

Centering � First, the centers of emission lines are aligned to the center of
samples, so that the influence of the position of the emission in a spectrum on
the classification is minimized, as we are interested only in the shape of the
emission line. Centering is done by subtracting the median of a spectrum from
the spectrum and alignment of the maximal magnitude of the spectrum to the
center of the sample.

Wavelet Transform � The discrete (DWT) and stationary (SWT) wavelet
transforms were employed for comparison, using the Cross-platform Discrete
Wavelet Transform Library [1]. The selected data samples were decomposed
into J scales as

Wj,n = 〈x, ψj,n〉, (5)

where Wj,n is a wavelet coefficient at j-th scale and n-th position, x is an input
spectrum, and ψ is a wavelet function. Two wavelets were tested: CDF 9/7 and
CDF 5/3 [4]. These wavelets are employed for lossy or lossless compression in
JPEG 2000 and Dirac compression standards.

Aggregate Function � Different functions were used for feature extraction
from the wavelet coefficients and compared: wavelet power spectrum (WPS),
Euclidean norm, maximum, mean, median, variance, standard deviation, skew-
ness, and kurtosis.

The feature vector
v = (vj)1≤j<J (6)

consists of J elements vj calculated for each obtained subband (scale) j of wavelet
coefficients using one of the functions above. All elements in one feature vector
were computed using the same function.

Specifically, the wavelet power spectrum for the scale j was calculated as

vj = 2−j
∑
n

|Wj,n|2. (7)

The bias of this power spectrum was further rectified [7] by division by corre-
sponding scale.

Classification

Resulting feature vectors were classified using the support vector machines (SVM)
[5] using the LIBSVM library [3]. The radial basis function (RBF) was used
as a kernel function. There are two parameters for the RBF kernel: C and
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γ. A strategy known as grid-search was used to find the parameters C and γ.
Various pairs of C and γ values were tried and each combination was checked
using 5-fold cross validation. We have tried exponentially growing sequences of
C = 2−5, 2−3, . . . , 215 and γ = 2−15, 2−13, . . . , 23. The results are given by the
combination of parameters with the best cross-validation accuracy.

Results

We compare the average accuracy of classification using different parameters of
feature extraction. There are three parameters: type of wavelet transform, type
of wavelet, and aggregate function.

Two types of wavelet transform were used: discrete (DWT) and stationary
(SWT); two types of wavelet: CDF 5/3 and CDF 9/7; and nine types of ag-
gregate function: wavelet power spectrum, Euclidean norm, maximum, mean,
median, variance, standard deviation, skewness, and kurtosis. More detailed
description of parameters is in section Feature Extraction.

All possible combinations of these parameters were used, resulting in 36 different
feature vectors and 36 values of classification accuracy. The average accuracy for
each value of each parameter was computed as the average from the accuracies
for all feature vectors containing this parameter value (and all combinations of
the other parameters). The results are in Table 1.

Parameter Value Average accuracy [%]

Wavelet transform SWT 96.70
DWT 96.06

Wavelet CDF 9/7 96.97
CDF 5/3 95.78

Aggregate function

Euclid. norm 98.40
Std. deviation 98.31
Maximum 98.18
WPS 97.54
Skewness 97.48
Variance 95.47
Kurtosis 95.34
Mean 94.35
Median 92.37

Table 1: The average classification accuracy for each value of each parameter of feature
extraction.

Table enables direct comparison of values of each parameter.
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We can see that the difference between DWT and SWT is not significant, so it
doesn’t matter which transform we use regarding the accuracy of classification.
However, regarding computational demands, SWT is more demanding. Thus,
after this experiment we can say that it is more advantageous to use DWT.

The wavelet CDF 9/7 has slightly better result than CDF 5/3. There is no trade-
off among different wavelets so we can claim CDF 9/7 to be more preferable.

There is quite big variance among the aggregate functions. We can say that first
three of them (Euclid. norm, std. deviation, and maximum) will be among the
most preferable, with the accuracy over 98% and very close values.

Conclusion

Classification of the original data is computationally expensive. In [2] we pro-
posed a method that reduces the number of attributes and the processing time
to a small fraction and increases the accuracy in many cases.

In this paper, we described the experiment with classification of spectra of Be
stars using different feature extraction methods based on the wavelet transform in
an attempt to find the best method. We compared different values of parameters
of feature extraction and identified the best combination.

In future work, we will compare more feature extraction methods and different
classifiers, and also results of classification and clustering. Based on this, we
will try to find the best clustering model, use it for clustering of spectra in large
archives, and possibly find some new interesting objects.
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